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Abstract

With the vast amount, multilingual and real-time nature of social media data, it is
challenging to extract relevant and useful information for individuals, companies and
organisations. It is of interest to assess if the content shared and its multilingual expressions
can be used to help a company in differentiating prospective customers from a general
audience, or for individuals and organisations to detect and identify important topics that may
otherwise go unnoticed within the mass of social media data. In this research, various methods
and approaches have been investigated to identify high-value social entities in the form of
social audiences and topics with minimal manual annotation effort. These include supervised
machine learning methods such as the Support Vector Machine (SVM) ensemble, unsupervised
clustering methods such as Latent Dirichlet Allocation (LDA), and text mining methods
including latent semantic analysis and association rules. In addition, a hybrid framework has
been developed for multilingual analysis by leveraging the strengths of both knowledge-based
learning and machine learning. Twitter data, which is openly available, was used for validation
and testing purposes.

Even though the aim of identifying high-value social audiences may seem to be
different from that of identifying high-value topics, the underlying framework for the
identification of these social entities remains the same. The first step is to earmark definitive
contents that can provide information for constructing training or evaluation data with
minimal annotation efforts. This step is crucial in order to avoid the alternative: the labour-
intensive process of manually annotating data forming large online datasets. The second step
is then to employ methods that are suitable to extract contents of interest. Both supervised
and unsupervised methods such as the SVM ensemble and Twitter LDA have been used in this
research to extract relevant social audiences. The SVM ensemble works well in this regard, as
the contents of Twitter account owners are typically well-defined and can be used as training
datasets for high-value target audience classification. On the other hand, since the number of
classes or topics is not known, the unsupervised Dirichlet Process Mixture Model is instead
preferred for topic detection. The third and last step is to assess the strengths and weaknesses
of each method used in order to develop a hybrid approach. It is found that the combination
or joint approach of various methods can often improve the recall and precision values and
enable the identification of high-value social entities across datasets of different nature. This
is supported by evidence from the promising results of a unique index devised for ranking high-
value social audiences, which is called the high-value social audience (HVSA) index, on three

different datasets, as well as the consistently higher precision and recall values from a ‘Joint’
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ranking method for identifying high-value topics with their sentiments in a huge set of
multilingual tweets.

Methods and findings generated from this research have the potential to be adopted
for addressing real-world problems. The HVSA index, for example, can be used to identify
online customers who are highly likely to be interested in the content shared on social media
by a business account owner. This can be useful in identifying prospective customers, or
improving engagement with current customers. The ability to identify social media followers
in a ‘ranked’ manner no doubt will help in better decision making, so that a (small) marketing
budget can be spent more effectively. On the other hand, being able to detect high-value topics
with their associated sentiments enables policy makers or organisations to understand issues
of concerns on the ground and uncover possible actionable insights for a better community or

customer reach.
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